Structural Learning with Amortized Inference

نویسندگان

  • Kai-Wei Chang
  • Shyam Upadhyay
  • Gourab Kundu
  • Dan Roth
چکیده

Training a structured prediction model involves performing several loss-augmented inference steps. Over the lifetime of the training, many of these inference problems, although different, share the same solution. We propose AI-DCD, an Amortized Inference framework for Dual Coordinate Descent method, an approximate learning algorithm, that accelerates the training process by exploiting this redundancy of solutions, without compromising the performance of the model. We show the efficacy of our method by training a structured SVM using dual coordinate descent for an entityrelation extraction task. Our method learns the same model as an exact training algorithm would, but call the inference engine only in 10% – 24% of the inference problems encountered during training. We observe similar gains on a multi-label classification task and with a Structured Perceptron model for the entity-relation task.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fast Amortized Inference and Learning in Log-linear Models with Randomly Perturbed Nearest Neighbor Search

Inference in log-linear models scales linearly in the size of output space in the worst-case. This is often a bottleneck in natural language processing and computer vision tasks when the output space is feasibly enumerable but very large. We propose a method to perform inference in log-linear models with sublinear amortized cost. Our idea hinges on using Gumbel random variable perturbations and...

متن کامل

Deep Amortized Inference for Probabilistic Programs

Probabilistic programming languages (PPLs) are a powerful modeling tool, ableto represent any computable probability distribution. Unfortunately, probabilisticprogram inference is often intractable, and existing PPLs mostly rely on expensive,approximate sampling-based methods. To alleviate this problem, one could tryto learn from past inferences, so that future inferences run fa...

متن کامل

Advances in Variational Inference

Many modern unsupervised or semi-supervised machine learning algorithms rely on Bayesian probabilistic models. These models are usually intractable and thus require approximate inference. Variational inference (VI) lets us approximate a high-dimensional Bayesian posterior with a simpler variational distribution by solving an optimization problem. This approach has been successfully used in vari...

متن کامل

Inference Suboptimality in Variational Autoencoders

Amortized inference has led to efficient approximate inference for large datasets. The quality of posterior inference is largely determined by two factors: a) the ability of the variational distribution to model the true posterior and b) the capacity of the recognition network to generalize inference over all datapoints. We analyze approximate inference in variational autoencoders in terms of t...

متن کامل

Margin-based Decomposed Amortized Inference

Given that structured output prediction is typically performed over entire datasets, one natural question is whether it is possible to re-use computation from earlier inference instances to speed up inference for future instances. Amortized inference has been proposed as a way to accomplish this. In this paper, first, we introduce a new amortized inference algorithm called the Margin-based Amor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015